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Abstract: – The paper presents an effective procedure for control design of multi input – multi output nonlinear 
processes. The procedure is based on an approximation of a nonlinear model of the process by a continuous-
time external linear model in the form of the left polynomial matrix fraction. The parameters of the continuous-
time external linear model are recursively estimated either by a direct method or through an external delta 
model. The control system structure with two feedback controllers is used. The controllers are derived using the 
explicit pole assignment method. The control is simulated on the nonlinear model of two conic liquid tanks in 
series. 
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1 Introduction 
A most part of processes in chemical, biochemical, 
polymer and other technologies exhibits nonlinear 
properties. From the system theory, these processes 
belong to the class of nonlinear systems. Moreover, 
a certain part of such processes requires to control 
more output signals independently. In order to 
achieve this, it is necessary to have at least as many 
independent input signals as output signals to be 
controlled. Such  processes are classified as 
multivariable or multi-input multi-output (MIMO) 
processes. 

It is well known that the control of nonlinear 
MIMO processes often represents very complex 
problem and traditional methods based on a use of 
controllers with fixed parameters can lead to control 
of a poor quality. In this case, it is necessary to 
apply some of the so called advanced methods. 
Here, the procedures can be based on internal state 
space or external input-output descriptions. As a 
frequently used method may be mentioned Model 
predictive control, e.g. [1] and [2], Nonlinear 
control, e.g. [3], LQ control, e.g. [4], [5], Robust 
control, e.g. [6]. The other methods can be found 
e.g. in [7], [8], [9], [10], and [11]..  

One possible method to cope with this problem is 
using adaptive strategies based on an appropriate 
choice of an external linear model (ELM) in the left 
polynomail matrix fraction description with 
recursively estimated parameters. which are 
consequently used for parallel updating of the 

controller‘s parameters.  
Two basic approaches can be used for 

identification of the continuous-time (CT) ELM. 
The first direct method [12], [13] and [14] is based 
on filtration of input and output signals where the 
filtered variables have the same properties (in the s-
domain) as their non-filtered counterparts. 
Derivatives of filtered signals that are necessary for 
the parameters estimate of the CT ELM are obtained 
from differential filters. This method has, however, 
some drawbacks – the necessity to solve additional 
differential equations representing the filters and 
estimate time constants of these filters. The second 
strategy uses an external δ-model of the controlled 
process with the same structure as a CT model. The 
basics of δ-models have been described e.g. in [15] 
and [16]. Here, parameters of δ-models can directly 
be estimated from sampled signals without the 
necessity to filter them. Moreover, it can be easily 
proved that these parameters converge to parameters 
of CT models for a sufficiently small sampling 
period (compared to the dynamics of the controlled 
process), see e.g. [17]. The control results obtained 
using both mentioted strategies were compared for 
the single-input single-output (SISO) system in [18]. 
This paper presents full control design procedure of 
a nonlinear MIMO process. The parameters of the 
CT ELM of the process are identified by both above 
mentioted methods. The control structure with two 
feedback controllers is used according to [19] and 
[20]. Input signals for the control system are step 
references and step load disturbances. Resulting 
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controllers are derived using the polynomial 
approach [21], [22] and the pole placement method, 
e.g. [23] and [24] with operations carried out in the 
ring of polynomial matrices.  

Note that in the presence of a time delay, the 
methods described e.g. in [25] – [29]  may be used  
 
 
2 CT External Linear Model 
In the time domain, the generalized continuous-time 
ELM is specified  by the vector differential equation 

 ( ) ( ) ( ) ( )t tσ σ=A y B u  (1) 

where d dtσ =  is the derivative operator, r∈ℜy  

stands for the controlled output vector, m∈ℜu  is 
the control input vector and A, B are polynomial 
matrices in σ. Using the Laplace transform,  the 
model is described in the s-domain as 

 1( ) ( ) ( ) ( ) ( )s s s s s= +A Y B U o  (2) 

where o1(s) is the vector of initial conditions, and, 
( ) [ ]rrs s∈ℜA  and ( ) [ ]rms s∈ℜB  are left coprime 

polynomial matrices in the form 
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The polynomials in matrices A(s) and B(s) are in 
general forms 

1
, 1, 1, 0,( ) ...ij ij

ij ij

n n
ij n ij n ij ij ija s a s a s a s a−

−= + + + +  (5) 

 , 1, 0,( ) ...ik
ik

m
ik m ik ik ikb s b s b s b= + + +  (6)  

for i, j = 1, … , r and k = 1, … , m. 
The transfer function of the controlled system is 
assumed in the form of the left polynomial matrix 
fraction 

 1( ) ( ) ( )s s s−=G A B . (7) 

Further, consider strictly proper G(s), and, with 
regard to some following operations, assume that 

the highest power of s in each row of the matrix A 
lies on its diagonal. Moreover, the monic 
polynomials with the unit coefficient by the highest 
power of s on the diagonal are assumed ( , 1

iin iia = ).  

Remark: The degree of the i-th row of a polynomial 
matrix M is maxi ij

j
r n=M . Then, for the matrix A 

with a highest power of s on diagonal the relations 
i iir n=A  and deg max ii

i
A n n= =  hold.  

 
 
3 CT ELM Parameter Estimation 
The direct method of the CT ELM parameter 
estimation can be briefly carried out as follows. 

Since the derivatives of all input and output 
cannot be directly measured, vectors of filtered 
variables uf and yf  are established as the outputs of 
filters  

 ( ) ( ) ( )f t tσ =C u u  (8) 

 ( ) ( ) ( )f t tσ =C y y  (9) 

where C(σ) is a stable polynomial matrix in σ that 
fulfills the condition 

  deg ( ) deg ( )s nσ ≥ =C A  (10) 

where the sign of equality is mostly used. 
Now, using the L-transform of (8) and (9), the 
expressions  

 2( ) ( ) ( ) ( )fs s s s= +C U U o  (11) 

 3( ) ( ) ( ) ( )fs s s s= +C Y Y o  (12) 

can be obtained where o2 and o3 are polynomial 
vectors of initial conditions. Substituting (11) and 
(12) into (2), the relation for filtered output takes the 
form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )f fs s s s s s s= +A C Y B C U o  (13) 

where  

 1 2 3( ) ( ) ( ) ( ) ( ) ( )s s s s s s= − +o o B o A o . (14) 

The next procedure requires the matrix C(s) in the 
diagonal form 

 ( ) ( ) rs c s=C I  (15) 

where Ir is the unit matrix and c(s) is a monic 
polynomial of degree n. 
Then, the relation between filtered variables has the 
form 

 ( ) ( ) ( ) ( ) ( )f fs s s s s= +A Y B U ψ  (16) 
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where ( ) ( ) / ( )s s c s=ψ o . 
A comparison of (2) and (16) shows equality of 
transfer behaviour of filtered and nonfiltered 
variables. 

Remark: ψ (s) is a vector of rational functions as 
the transforms of a vector function ψ(t) which  
expresses a difference between initial conditions of 
filtered and nonfiltered variables (in reference to a 
last steady state).  
After conversion of (16) to the time domain, the 
equation for filtered variables takes the form 

 ( ) ( ) ( ) ( )f ft tσ σ=A y B u . (17) 

The equation describing i-th row of (17) can be 
written as 

1

1

( ) ( ) ( )
, 1 , ,1

0 0 0

( ) ( )
, 1 ,1

0 0

... ...

...

i ii ir

i im

n n n
j j j

j i j ii j irf if rf
j j j

m m
j j

j i j imf mf
j j

a y a y a y

b u b u

= = =

= =

+ + + + =

= + +

∑ ∑ ∑

∑ ∑
. (18) 

Now, the filtered variables including their 
derivatives can be sampled from filters (8) and (9) 
in discrete time intervals tk = k TS , k = 0,1,2, ...   
where TS is the sampling period.  
Introducing the regression vector 

(

)

1

1

( )
1 1

( 1) ( )

( ) ( )
1 1

( ) ( ) ... ( ),... ,

( ) ... ( ), ... , ( ) ... ( ),
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i

ii ir

i im
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m m
f k k mf k kf mf

t y t y t

y t y t y t y t

u t u t u t u t

−

= − −

− − − −

Φ

 (19) 

the vector of parameters in the i-th row  

(
)

1

1

0, 1 , 1 0, 1,

0, , 0, 1 , 1 0, ,

... , ... , ... , ... ,

... , ... , ... , ...

i ii

ir i im

T
i i n i ii n ii

ir n ir i m i im m im

a a a a

a a b b b b

−=Θ
 (20) 

can then be estimated in discrete times from the 
ARX model, see, e.g. [30] and [31]. 

 ( ) ( ) ( ) ( ) ( )iin
k i k i k i kify t t t tε= +Θ Φ . (21) 

 
 
4 Delta External Linear Model 
Establish the δ-operator defined by 

 
0

1q
T

δ −=  (22) 

where q is the forward shift operator and T0 is the 
sampling interval. When the sampling interval is 
shortened, the δ-operator approaches the derivative 

operator σ so that 

 
0 0
lim

T
δ σ

→
=  (23) 

and, the δ-model  

 ( ) ( ) ( ) ( )t tδ δ′ ′ ′ ′=A y B u  (24) 

approaches the continuous-time model (1). Here, 
t′ is the  discrete time,  and,  A' and  B'  are matrices  
with an identical structure as A and B in the form 
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with polynomials 

 
1
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where 
, 1

iin iia′ = , ii ijn n> for j ≠ i and  ii ikn m>  for all i,     
j = 1, … , r  and  k = 1, … , m. 
Substituting 0 iit k n′ = − where 0 iik n≥ , the equation 
describing i-th row of (24) can be derived as  
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where the terms in (29) are 
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5 Delta ELM parameter estimation 
Obviously, an actual value of the controlled output 
yi(k0) in the i-th row is only in the term 

0( )iin
i iiy k nδ −  (for j = i and p = 0 in (30)). Now, 

denoting 

0, ( )
i

j j
i iii y y k nϕ δ= − , 0, ( )

k

j j
k iii u u k nϕ δ= −  (32) 

and, introducing the regression vector 
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then, the vector of parameters in the i-th row of ′A   
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can be recursively estimated from the regression 
(ARX) model 

 0, ( )ii
i

n T
i i ii y kδϕ ε= +Θ Φ . (35) 

or, in detail, from the equation 
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6 Controller Design 
The control system with two feedback controllers is 
depicted in Fig. 1. Here, G represents the CT ELM, 
GQ and GR are controllers. 
 

- -

 u0 

 v 

  u  e  w  y 

 GQ 

 G  GR

 
Fig. 1:  Control system structure. 
 

Further, r∈ℜw is the vector of references and 
m∈ℜv  is the vector of load disturbances. 

Generally, their transforms can be expressed as 

 1( ) ( ) ( )w ws s s−=w F h , 1( ) ( ) ( )v vs s s−=v F h . (37) 

Considering all elements of both input signals as 
step function, matrices Fw and Fv in (37) take forms 

 ( ) ( )w vs s s= =F F I  (38) 

and vectors (37) can be rewritten to 

 010 20( ) ...
T

rww ws
s s s

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

W  (39) 

 10 20 0( ) ...
T

mv v vs
s s s

⎛ ⎞= ⎜ ⎟
⎝ ⎠

V  (40) 

where wi0 and vj0 are constants. 

The transfer functions of controllers are assumed 
in the form of right coprime polynomial matrix 
fractions  

1
1 1( ) ( ) ( )Q s s s−=G Q P ,   1

1 1( ) ( ) ( )R s s s−=G R P  (41) 

where 

1( ) [ ]mrs s∈ℜQ , 1( ) [ ]mrs s∈ℜR  and 1( ) [ ]rrs s∈ℜP . 
The goal is to find such proper controllers that 

ensure the control system stability, asymptotic 
tracking of  step references and step load 
disturbance attenuation. The procedure for deriving 
admissible controllers can be performed as follows: 
Using descriptions of basic signals in the control 
system  

 [ ]1 1
0( ) ( ) ( ) ( )s s s s− −= = +y A B u A B u v  (42) 
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 [ ]1 1
0 1 1 1 1( ) ( ) ( ) ( )s s s s− −= − −u R P w y Q P y  (43) 

the output and tracking error vectors can be derived 
as 

 1 1
1 1 1( ) ( ) ( )s s s− −⎡ ⎤= +⎣ ⎦y P D BR P w B v  (44) 

   1 1
1 1 1 1( ) ( ) ( ) ( )s s s− −⎡ ⎤= + −⎣ ⎦e P D AP BQ P w B v  (45) 

vhere 

 1 1 1( )= + +D AP B R Q . (46) 

Now, feedback controllers given by a solution of the 
matrix Diophantine equation 

 1 + =AP BT D  (47) 

with a stable polynomial matrix [ ]rr s∈ℜD on the 
right side that ensures the control system stability. 
Here, the matrix T has been established as 

 1 1= +T R Q . (48) 

The step load disturbances will be rejected for 
the matrix P1 in (45) divisible by denominators s in 
(39) and (40). This condition is fulfilled for P1 in the 
form  

 1 1( ) ( )s s s=P P . (49) 

Asymptotic tracking of step references is ensured 
for the term 1 1+AP BQ  divisible by s in 
denominators of (39). Evidently, this divisibility is 
fulfilled for Q1 taking the form 

 1 1( ) ( )s s s=Q Q . (50) 

Taking into account (49) and (50), polynomial 
matrices of controllers are given by a solution of the 
matrix Diophantine equation 

 1( ) ( ) ( ) ( ) ( )s s s s s s+ =A P B T D  (51) 

where 

 1 1( ) ( ) ( )s s s s= +T R Q . (52) 

Evidently, the degrees of matrices are given as 

 1deg deg=R T , 1deg deg 1= −Q T . (53) 

Considering expansions of matrices T ,  1R  and 1Q  
as 

 
deg

0
( ) j

j
j

s s
=

= ∑
T

T T  (54) 

 
deg

1 1
0

( ) j
j

j
s s

=
= ∑

T
R R  (55) 

 
deg

1
1 1

1
( ) j

j
j

s s −

=
= ∑

T
Q Q  (56) 

where 1,j jT R and 1 jQ are matrices of constant 
coefficients, a solution of (51) leads to a simple term 
of T given by 

 0 0 0=B T D  (57) 

and, subsequently, to  

 10 0=R T . (58) 

It is well known that a solution of a single 
polynomial matrix  equation provides only two 
unknown polynomial matrices. Hence, selectable 
coefficient matrices mm

j ∈ℜβ can be introduced 

that distribute weights among 1R  and 1Q  
parameters. Denoting expansions of matrices 1R  
and 1Q  as 

 1 1,j jR Q ,     j = 1, …, deg T  (59) 

then, their elements can be calculated from 
equations 

 1 j j j=R β T ,  ( )1 j j j= −Q I β T  (60) 

 for  j = 1, …, deg T. 

Remark: If j =β I  for all j, the control system in 
Fig. 1 simplifies to the 1DOF control configuration. 
If j =β 0  for all j, and, both references and load 
disturbances are step functions, the control system 
corresponds to the 2DOF control configuration. 

From the practical point of view, it is effective to 
choose jβ  as diagonal matrices 
 

 

1

2

.. .. 0

:

: ..
0

j

j
j

jm

β
β

β

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

β  (61) 

for all j. 

Now, taking into account (49) and (50),  transfer 
functions of controllers can be rewritten to the form 

 ( ) 1
1 1( ) ( ) ( )Q s s s

−
=G Q P  (62) 
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 ( ) 1
1 1( ) ( ) ( )R s s s s

−
=G R P . (63) 

Note that degrees of polynomial matrices in transfer 
functions of controllers must be determined in 
accordance with the requirement on properness of 
controller transfer functions. 
 
 
7 Example and Simulation Results 
Two conic liquid tanks in series are considered 
according to Fig. 2.  
 

q1f 
q2f 

q2q1 

D 

H 
h2 h1 

 
Fig.2 Two conic liquid tanks in series. 
 
Using  standard  simplifications,  the  model of  the 
plant can be described by two nonlinear differential 
equations 

 
2

2 1
1 1 124 f

d hD h q q
dtH

π + =  (64) 

 
2

2 2
2 1 2 224 f

d hD h q q q
dtH

π − + =  (65) 

where D is the upper diameter of both tanks, H 
denotes the total high of both tanks, hj are liquid 
levels in tanks, qj stand for stream flowrates and qjf  
are their inlet values, (for j = 1, 2). The stream 
volumetric flowrates depend upon levels in tanks as 

 1 1 1 2 ,q k h h= −   2 2 2q k h=  (66) 

  ( 1 2 1 1if 0 thenh h q q− < = − ) 

where k1, k2 are constants. 
Initial conditions for (64) and (65) are steady state 
liquid levels 1 1(0) sh h= , 2 2(0) sh h= . The model 
parameters and values of variables at the operating 
point used in simulations are: 2.5

1 0.316m /mink = , 
2.5

2 0.296m /mink = , D = 1.5 m H = 2.5 m, 

1 1.8msh = , 2 1.4msh = , 3
1 0.2m /mins

fq = , and 

, 3
2 0.15m /mins

fq = . Both the control and controlled 
variables are considered to be deviations from their 
values at the operating point 

 1 1 1( ) ( ) s
f fu t q t q= − ,  2 2 2( ) ( ) s

f fu t q t q= −  (67) 

 1 1 1( ) ( ) sy t h t h= − ,  2 2 2( ) ( ) sy t h t h= − . (68) 

Simulated step responses of the process are shown 
in Figs. 3 and 4.  
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Fig. 3. Controlled outputs step responses to u1. 
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Fig. 4. Controlled outputs step responses to u2. 

 
Taking into account profiles of these responses, 

polynomial matrices of the CT external linear model 
in the form of LPMF have been chosen as 

01 02

03 04
( )

s a a
s

a s a
+⎛ ⎞

= ⎜ ⎟+⎝ ⎠
A ,  01

04

0
( )

0
b

s
b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

B   (69) 

 
Remark: For simplicity, the indexing 1 – 4 has 

been here used. 
 

In the first case, the parameters in (69) were 
estimated by the direct method. There, the filtered 
variables  were  computed  as  outputs  from the first  
 
order filters 

 0i f i f iy c y y+ = ,  0i f i f iu c u u+ = ,  i = 1,2. (70) 
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Then, the CT ELM parameters were in parallel 
estimated from two regresion equations 

 

1 01 1 01 1

03 2 1

2 04 2 02 1

04 2 2

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

f k f k f k

f k k

f k f k f k

f k k

y t b u t a y t

a y t t

y t b u t a y t

a y t t

ε

ε

= − −

− +

= − −

− +

 (71) 

in discrete time intervals tk = k Ts , k = 0,1, … . 
In the second case, parameters in () were 

estimated using a δ-model with corresponding 
matrices 

01 02 01

03 04 04

0
( ) , ( )

0
a a b

a a b
δ

δ δ
δ

′ ′ ′+⎛ ⎞ ⎛ ⎞′ ′= =⎜ ⎟ ⎜ ⎟′ ′ ′+⎝ ⎠ ⎝ ⎠
A B  (72) 

There, two parallel identifications in the form  

 1 0 01 1 0 01 1 0

03 2 0 1 0

( 1) ( 1) ( 1)
( 1) ( )

y k b u k a y k
a y k k

δ
ε

′ ′− = − − − −
′− − +

 (73) 

 2 0 04 1 0 02 1 0

04 2 0 2 0

( 1) ( 1) ( 1)
( 1) ( )

y k b u k a y k
a y k k

δ
ε

′ ′− = − − − −
′− − +

 (74) 

were used where 

 0 0
0

0

( ) ( 1)( 1) i i
i

y k y ky k
T

δ − −
− = ,  i = 1,2 . (75) 

for k0 = 0,1, …  . 
In both cases, the recursive identification method 
with exponential and directional forgetting 
according to [20] was used. 

With regard to requirement of the controller 
properness, matrices 1P  and T were chosen in the 
form 

 01 02
1 1

03 04
( ) ( )

s p s p
s s s

s p s p
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

P P  (76) 

 11 01 12 02

13 03 14 04
( )

t s t t s t
s

t s t t s t
+ +⎛ ⎞

= ⎜ ⎟+ +⎝ ⎠
T  (77) 

and, the diagonal matrix on the right side of (51) as 

 
2

1
2

2

( ) 0
( )

0 ( )

s
s

s

α

α

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+⎝ ⎠

D . (78) 

Then, solving (51), the coefficients in (76) and (77) 
were derived as 

 02 03 0p p= = ,  01 04 1p p= =  

 
2
1

01
01

t
b
α=
′

,  11 1 01
01

1 (2 )t a
b

α ′= −
′

  

 02 03 0t t= = , 02
12

01

at
b
′

= −
′

, 03
13

04

at
b
′

= −
′

 (79) 

 
2
2

04
04

t
b
α=
′

,  14 2 04
04

1 (2 )t a
b

α ′= −
′

. 

Choosing the matrix (61) as 

 11
1

12

0
0
β

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

β  (80) 

and, solving (60), transfer functions of controllers 
take forms 

 11 11 11 12

12 13 12 14

(1 ) (1 )
( )

(1 ) (1 )Q
t t

s
t t

β β
β β

− −⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

G  (81) 

 

01
11 11 11 12

04
12 13 12 14

( )R

t
t t

ss
tt t
s

β β

β β

⎛ ⎞+⎜ ⎟
⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

G  (82) 

All simulation experiments were performed for 
references 1 20.2, 0.15w w= = in the time interval 
0 100mint≤ < , 1 20.1, 0w w= − =  in the time 
interval 100 200mint≤ <  and  1 20.15, 0.10w w= =  
in the time interval 200 300mint≤ ≤ . 

For the direct CT ELM parameter estimation, the 
filter parameter was chosen as c0 = 0.5 and the 
sampling period as 0.5 minsT = . 

The recursive estimation of the delta ELM 
parameters was performed with the sampling 
interval T0 = 0.5 min. For the start, P-controllers 
with a small gain were used. 

The simulation results obtained using the direct 
CT ELM parameter estimation (designated as CT 
ID) are in Figs. 5 – 9. 

An effect of parameters α on controlled outputs 
and control inputs is shown in Figs. 5 – 6. Their 
higher values accelerate the control but lead to 
overshoots (undershoots) of the controlled outputs. 
Moreover, higher values of α result in greater 
changes of control inputs. This fact can be important 
in control of real processes. 

Each output can be influenced differently by 
selecting different values of α as shown in Fig. 7.   
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Fig. 5. CT ID: Controlled outputs for various α 
           (β11 = β12 = 0.5). 
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Fig. 6. CT ID: Control inputs for various α 
            (β11 = β12 = 0.5). 
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Fig. 7. CT ID: Controlled outputs for α1 = 0.2,  
           α2 = 0.4, β11 = β12 = 0.5. 
 

An effect of parameters β on controlled outputs 
and control inputs is shown in Figs. 8 – 9. Here, 
extreme values of β  were considered so that they 
correspond to the 1DOF (β11 = β12 = 1) and to the 
2DOF control system structure (β11 = β12 = 0). The 
results confirm the known fact that the 2DOF 
structure provides smooth control responses without 
significant overshoot and leads to more careful 
control inputs.  
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Fig. 8. CT ID: Controlled outputs for various β 
           (α1 = α2 = 0.25). 
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Fig. 9. CT ID: Control inputs for various β 
           (α1 = α2 = 0.25). 
 

The simulation results obtained using the delta 
ELM parameter estimation (designated as Delta ID) 
are presented in Figs. 10 – 13. 

The simulation performed with the same 
parameters α and β as in Fig. 5 is shown in Fig. 10. 
There are minimal differences between control 
responses obtained by both identification methods. 
Both controlled outputs and control inputs can also 
be shaped by selection of different values of β11 and 
β12 as shown in Figs. 11 and 12. 

The responses in Fig. 13 show that an 
appropriate selection of parameters α and β  enables 
to achieve the control of very good quality. 
 

0 50 100 150 200 250 300
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25 α1 = α2 = 0.2

y 1,
 y

2 
(m

)

t (min)

  y1
  y2

α1 = α2 = 0.4

 
Fig. 10. Delta ID: Controlled outputs for various α 
             (β11 = β12 = 0.5). 
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Fig. 11. Delta ID: Controlled outputs for  
             α1 = α2 = 0.4, β11 = 0.1, β12 = 0.9. 
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Fig. 12. Delta ID: Control inputs for α1 = α2 = 0.4, 
             β11 = 0.1, β12 = 0.9. 
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Fig. 13. Delta ID: Controlled outputs for  
             α1 = α2 = 0.25, β11 = β12 = 0. 
 
 
8 Conclusion 
The paper presents one approach to the continuous-
time adaptive control of nonlinear multi-input multi- 
output processes.    The  control design is based on 
approximation of a nonlinear model of the process 
by a continuous-time external linear model in the 
form of the left polynomial matrix fraction. Its 
parameters are recursively estimated either by a 
direct method or through an external delta model 
with a corresponding structure. The control system 
structure with two feedback controllers is used. Both 
resulting continuous-time controllers are solved and 

derived in the ring of polynomial matrices. 
Parameters of  the controllers are periodically 
readjusted according to recursively estimated 
parameters of the external linear model.  The control 
quality is ensured by selectable poles of the closed-
loop as well as by parameters distributing weights 
among numerators of the subcontroller transfer 
functions.  The presented method has been tested by 
computer simulation on the nonlinear model of two 
conic liquid tanks in series.  
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